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A Lax—Wendroff-like finite-difference representation for the transport of multiple
chemical components is formulated via integer variables. This representation en-
sures exactly the desired conservation laws at all times and achieves low numerical
diffusivity. The algorithm requires less memory as compared to its floating-point pre-
decessor, hengauchless than standard lattice gas and lattice Boltzmann methods to
date. Analytical and numerical studies demonstrate that the algorithm is stable under
subsonic conditions. © 1999 Academic Press

1. INTRODUCTION

The importance of computation with integer representations has become rapidly |
ognized since the emergence of lattice gas (LG) and lattice Boltzmann (LB) methods
computational fluid dynamics [1-8]. The most obvious reasons for this include less com
tational memory requirements and better consistency with modern computer architectt
More importantly, such representations are free of roundoff errors, so that fundamental ¢
servation laws can be exactly enforced at all times. This is highly desirable in circumstar
such as stiff and very long time numerical computations, in which error accumulation n
severely affect the quality of the results. We are particularly interested in the simulat
of reacting flows, possibly involving a significant number of chemical components, ec
at a different density and evolving on disparate spatial and time scales. As a result, e
preservation of the conservation properties becomes crucial in order to produce an accl
simulation [9].
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Reacting flow dynamics consists of three fundamental processes. These are: (1) 1
tion, in which some chemical components are turned into other chemical compone
(2) mechanical feedback, in which the local fluid properties are altered due to heat rele
or consumption as a result of reactions; and (3) transport, in which these component:
advected from place to place by the flow. In this paper, however, we only address the
cific issue of how to simulate the transport of multiple chemical components: reaction ¢
mechanical feedback will be presented in future work. Besides reacting flows, the pre:
algorithm can, and already has been used for the numerical simulations of high-Reyn
flows within the framework ok — ¢ turbulence models, in which the turbulent kinetic energy
k and the turbulent dissipatianevolve according to passive-scalar-like dynamic equation
plus local source terms which are readily incorporated within the formalism describec
this work [10].

The paper is organized as follows. In the next section, we present a finite-differer
scheme for solving the multiple component transport process (see Eq. (1) below).
provide a detailed stability analysis for such a scheme in the Appendix. In Section
we describe how to convert the scheme into an integer representation while satisfying
necessary conservation requirements. In addition, we discuss some possible metho
ensure the positivity of the density distribution functions. In Section 4, we present resl
of direct numerical simulations for selected test cases demonstrating the accuracy o
method. Finally, a discussion of the results is presented.

2. LAX-WENDROFF DISCRETIZATION SCHEME

Mathematically, the transport problem is defined by a set of passive scalar equation
which the motion of the various components is carried by a prescribed fluid velocity fie

ops + V- (psu) = V- [DpV(ps/p)], 1)

whereps = ps(X, t) is the local mass density of thsth component afx, t); s=1,..., S.
The fluid velocity,u is a prescribed function of space and time. The term on the right-hal
side of Eq. (1) describes the diffusion of tsth component with diffusivity coefficiend.
For simplicity we shall assumB is the same for all species. The form of this equation i
consistentwith the continuity equation for the overall mass densityt) = Zsszl ps(X, t),

o+ V- (pu) =0 @

because the right-hand side of (1) vanishes upon summing over all components. One ¢
most popular finite difference schemes for approximating an advection process, igno
the diffusion effect, is the Lax scheme [11]. Idadimensional Cartesian mesh spannec
by integerd,, along directionx, according tax = ESZlIQAO,Ra, the Lax scheme may be
represented by the difference form

ps(X, t + At) = % 3 Kclj + Ua) ps(X — Ag@, t) + <i - Uj) ps(X+ Agd, t)} G

where the subindex (=X, Yy, z) runs over the Cartesian components ang £,. UF =
U, (X £ A, t)(At/A,) is the Courant number in theth dimension.
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A natural way for dealing with the diffusion term on the right-hand side of Eq. (1
is to use the centered-difference approach. As detailed in the sequel, this would lea
numerical instability because the right-hand-side of Eq. (1) contains a hidden convec
component. Consequently, an alternative formulation is called for. To this purpose,
rewrite the diffusion term in the form

V- [DpVi(ps/p)] = -V - [(D%)ﬁ LV .[DVp

=-V. [(D%>Ps:| + V- [(VD)ps] + DV?ps — (V?D)ps (4)

so that the third term on the right-hand side in the above expression becomes the ordi
diffusion term, while the first two terms can be combined and together act like an effect
advection (reminiscent of the so-called Fick’s law) with the velocity,

v
up= D~ _vD. (5)
0

Recognizing the advection nature of this combined term, we can immediately underst
why the naive approach suggested above does not work: it is known that a cente
difference representation for advection as combined with explicit first order time march
is unconditionally unstable [11, 12]. Equation (1) can be cast into a new form,

dps + V - (psl)) = DV?ps — (V?D)ps, (6)

wherell = u 4 uy, is now the overall generalized advection velocity. Both the term involvin
the Laplacian of the diffusivity in Eq. (6) and the second term in the expression for t
additional effective velocity, Eq. (5), vanish in the case of constant molecular diffudivity,
The Lax finite-difference approximation for advection can still be adopted, except tl
UZ is now understood to be the generaliZegis opposed to the original fluid velocity. The
centered difference scheme can be safely used for approximating the regular diffusion t

D R -
DVZps~ ) A2 [PsXF Aud@, 1) = 2056, 1) + ps(X = Audl, D] ©)

a

as well as the term involving the Laplacian of the diffusivity.

As it is well known, the Lax scheme is stable as long as the extended CFL (Coura
Friedrichs—Lewy) condition is satisfieESzl(ua (X, t)At/A,)? <1/d [11, 13]. However,
it generates a numerical diffusion of the form

1
2d

~ oy A2
Dne = 1-dug|-—-2, 8

n [ by ®
whereU, = 0, (At/A,) is the local Courant number along directi@nThis indicates that
the numerical diffusivity vanishes only when the magnitude of the Courant number takes
value J/d. For a given practical resolution, such numerical diffusion is often unacceptab
and we must seek a way to eliminate it. Based on direct analysis, it can be shown that
way to remove it is to simply introduce an artificial negative diffusion of the same for

as in (8) but with an opposite sign. This is equivalent to the Lax—Wendroff scheme [1
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It is quite interesting to realize (see details in the Appendix) that such a modificatic
together with considerations for cross-product effects in higher dimensions, removes
leading order numerical diffusion in the standard Lax scheme and yet it maintains stabi
Obviously we can discretize this additional term via a centered difference approximati
After combining all these considerations, we obtain a generalized Lax-like scheme for
multiple component transport process, and the final form of the finite-difference equat
becomes

1 1 - . 1 - .
+ ) [s(X+ Ag@, 1) = 20506, 1) + ps(X — Ay, D] Dy

— Y [D(X+ Agd. t) — 2D(X. 1) + D(x — A,a, t)]%ps(x, t)

- % Z (U0 5(X =A@, D[ ps(X — Mg 4+ Apf, 1)

o, Ba
— ps(X — Aol — AgB D] — UEU s (X + Au@, D[ ps(X + Au@ + AgB., 1)
— ps(X+ Ao@ — AgB, D]}, ©
where
UL =U,(x+ Ad,t)
and
Dy = Di—é - %(1— dU.)?)|.

The terms in the double summations are for the purpose of eliminating cross-product er
whend > 1. Note that while the discretization of the diffusion term (terms on the second lii
above) involves a combination of the molecular and numerical diffusivities, the Laplaci
of the diffusion (terms on the third line above) involves the molecular diffugidy For the
remaining sections of this paper, we adopt the simplifying assumption that the molect
diffusion, D, is constant.

Before moving further, it is worth mentioning that the stability problem discussed
the present section would not arise had we chosen the mass fragtienss/p instead
of the partial densitieps, as dependent variables. This is because in the mass-fracti
representation, the right-hand-side of Eq. (1) is purely diffusive and can be harmles
center-differenced.

However, since our highlight is the use of integers, it appears much more natural :
convenient to use densities as dependent variables than mass fractions since the
are intrinsically fractional numbers. Hence, the idea is to prioritize and leverage ex
conservativeness over straightforward stability. Note that in light of the stability analy:
presented in the Appendix, this choice does not ingaly sacrifice in terms of numerical
stability. All it takes is a different, slightly more elaborated, formulation of the problen
namely the one detailed in the present section. This is amostly welcome and non-trivial re
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(in more than one dimension) as it permits us to do away with implicit time marching, her
preserve a basic asset of lattice methods, namely high amenability to parallel computil

3. INTEGER REALIZATION AND EXACT CONSERVATION LAWS

The Lax—Wendroff scheme satisfies mass conservation for each chemical componel
to the precision of the representation of the component densities. The main goal of
integer formulation is to make this conservation exact. For the purpose of the conseq
integer formulation, itis advantageous to take the following perspective. Equation (9) cat
viewed as a result of a two-step partitioning process as described below: During each
t, the first step is to split the component densityx, t), at the node into@+ 1 directional
densitieseach associated with one of theé -2 1 nearest-neighbor nodes (including itself)
on a given Cartesian mesh. This splitting step can be represented as

+1

ps 1) = > oL, 06 1) + p2(X, 1), (10)

I=—1 «

where thd =0 has been explicitly singled out and is not included in the first summatio
ie, > >, 1=2d. Here

P (X, 1) = PL(X, D)ps(X, 1) + QL (X, 1) (11)
and
pd(x,t) = PO(x, ) ps(X, 1) + QO(x, t). (12)

Such a partition has been designed to satisfy mass conservation, i.e., the Sigcomes
=, if the weights obey the normalization condition,

+1
S SRl + Pox ) = 1,
|I=—1 «

and
+1
STY Qi+ Qb =0.

I=—1 «

For the Lax—Wendroff scheme given in the previous section, these weights are specific
defined as

Plx,t) = %E F 10, (x, t)} D, ) (13)
PO(X.t) = =2 Da(x, 1) (14)

| ~ ~ A -
Q1) = —gUa( 0 > U, Dlps(x+ Aph, 1) — ps(x = Agh, D] (15)
B#a
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and
Q°(x,t) =0 (16)

which can be directly verified as satisfying the normalization condition.

The second step in the scheme is to move the directional densities (11) and (12)
structed above to each of their own corresponding neighboring nodes. This is the advec
step. That is, we define new quantitigg, such that

psTL(X, t) = ,OL,(,(X — 1A, t) (17)
and

ps 2%, 1) = pJ(x, 1) (18)

so that the new density distribution for each component at the next time step is a resu
the summation of the advected,

+1
PO t+1) =D > pol (. 1) + pg (. 1), (19)

I=—1 «

Because this step is simply a spatial relocation of the directional densities, it obviou
conserves the global mass in the system for each component.

Using the above two-step partitioning point of view, we can easily construct an intec
realization of the transport scheme. In an integer formalism, each component gefsity
is represented by an integer, which can directly be interpreted as a number of “ma
molecules” of the given species, and for the sake of simplicity, we rename this density
Ns(X, t). In order to ensure exact mass conservation, the splitting step in the above mus
implemented carefully. First we integerizg, (x, t) andpd(x, t) as

Ne, (X, t) = Int[pl, (x, t) + rand,, (x, 1)], (20)

where the operator, Int, truncates off the values to the right of the decimal point. Al
rand ,(x,t) is a random number uniformly distributed between 0 and 1, witl
(rancga(x, t)) =0.5. Note that the quantity'&a(x, t) is represented and computed in real
numbers as defined previously according to Eq. (11). This integer operation achieves
real number accuracy in a statistical sense, dm;,a(x, 1)) :p's,a(x, t). Furthermore, in-
stead of using Eq. (12), the integiif (x, t) is computed in the following way to enforce
the mass conservation explicitly,

+1

NOOX 1) = Ne(x, ) = > ) NL,(x. 1), (21)

I=—1 «

i.e., all of the remaining density after the advected components are integerized is place
the original location.

The advection step is unchanged except for replagingiith Ns in Egs. (17), (18),
and (19).

It can be seen that the integer process defined above enforces exact conservation lz
all times and realizes the same averaged transport evolution equations given by Eq. (
a statistically averaged sense. This is true because the transport equations are linear.
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4. NUMERICAL SIMULATIONS

The present algorithm has been implemented with 16-bit inté@erNs <26 — 1=
65,535) representation and tested on the following two-dimensional cases:

1. Purely diffusive flow (no advection)
2. Uniform advection-diffusion (uniform flow)
3. Poiseuille advection-diffusion flow (Taylor hydrodynamic dispersion).

In all cases the species densities are initialized according to a Gaussian profile supe
posed on an uniform background

2
ps(X, 0) = bs + %exp(—%), s=01, 22)

wherer2 = ((x — Xs)/oxs)? + ((Y — Ys)/oys)?, and Xs, Ys, oxs, andoys are the centers
and half-widths of the Gaussian profile, respectively. This is a convenient choice in orde
measure advection and diffusion in terms of translation and spreading of the initial pro
as it evolves in time. The parameters of the Gaussian profile and background are ch
in such a way as to ensure that the total dengity po + p1 is uniform in space. Note
that since the diffusivities are constants, this impligs= 0 throughout all test cases (see
Eg. (5)). The boundary conditions are as follows: periodic on inlet/oulet and no spec
flow at top/bottom walls.

4.1. Purely Diffusive Flow (u=Q D = const)

The main aim of these simulations is to demonstrate that our numerical scheme
virtually no numerical diffusion.

To this purpose, three sets of simulations at hih=0.1), low (D =0.001), and no-
diffusivity at all (D = 0) have been performed.

The simulations are run on a 1860 lattice. The other parameters are set as follows
Opox = O1x = Ogy = O1y = 5, Xo = X]_ = 50, Y() = Yl = 25, bo = 32,000 bl = 320,
ap=—320Q a; =3200. This corresponds ty =159,494,235 particles in the majority
species andN; = 2,101,844 particles in the minority one. Both numbersexactlycon-
served throughout the simulation.

41.1.u=0,D=0

The mid-plane(y = 25) densitiespg, p1 as a function of the streamwise coordinate
at timet =0, 100, 200, 300, 400, 500 are shown in Figs. 1 and 2. From these figures
see that the initial profiles are basically unperturbed as time unfolds. This is exactly w
they should do in the absence of numerical diffusion, since the physical diffusivity of bc
species is set to zero.

41.2.u=0,D=0.001

The same test with = 0.001 is presented in Figs. 3 and 4, from which a small broader
ing of the initial profiles is visible. A quantitative assessment of this broadening is showr
Fig. 5, where the squared variance of the density prefile >, pi[(x —X)%+ (Vi — ¥)?],
is represented as a function of time for both species. In this equatieno />, o,
pr=p(X, ) andx= > px, Y= > piy are the average positions associated with th
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FIG.1. Mid-plane density of species zero as a functior aft = 0, 100, 200, 300, 400, 500, fop =0, D =0.
Here and throughout, time is given in lattice time-steps. Note that all six curves collapse into a single one, sho
that the system does not move away from the initial condition.
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FIG.2. Mid-plane density of species one as a functior aft =0, 100, 200, 300, 400, 500 fak, =0, D =0.
Note that all six curves collapse into a single one since the system does not move from the initial condition.
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FIG. 3. Mid-plane density of species zero as a functiorkdbr t =100, 200, 300, 400, 500, fdJ, =0,
D =0.001. Note the mild broadening of the profiles as time unfolds, due to non-zero diffusivity.

4000 T T T [l T T T T T
't=0,100,200,300,400,500° —

3500 E

3000 -

2500 .

2000 E

1500 .

Density of species 1 at y=H/2

1000 E

500 - E

0 1 1 1 1 L 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
X

FIG. 4. Mid-plane density of species one as a functiorxdbr t =100, 200, 300, 400, 500, fdj, =0,
D =0.001
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FIG.5. Variance squared of species zero and one as a function of time. The straight short-dashed line repre
the analytical resulb =0.001

species densities. The discrete intlenns over the two-dimensional lattice and the specie
indexs is dropped for simplicity.

The diffusivity is measured in the numerical experiment according to the standard relat
De(t) = o2(t) /4t, the expectation being that if numerical diffusion is negligitDgt)
should match exactly the input value of physical diffusivly

This expectation is basically confirmed by the results shown in Fig. 5 (the short-dasl
line denotes the analytical valu2 =0.001). The quantitative values from a linear best-
fit to the data giveD =0.995 1072 for the bulk species (species 0) abd=0.974 103
for the tracer species (species 1) which agree well with the analytical value. We note
the estimate of the diffusivity on the tracer species is clearly affected by statistical noi
This is not surprising due to the small number of integer particles used to represent
minority species. In fact, the same estimate on the majority species is much less expos
fluctuations.

Similar tests on the high diffusivity cag® = 0.1) provide basically the same sort of
quantitative agreement betweBy andD.

We conclude that the numerical scheme is indeed virtually free from numerical diffusi
effects.

4.2. Uniform Flow (u = const,D = const)

The next set of simulations refers to the case of a Gaussian profile moving in an unifc
flow. The goal is to show that the low-diffusivity property of this scheme is still preserve
under convective flow, and also to gain insight into the dispersive effects associated \
the numerical discretization.

We have performed a series of simulations with various values of the spe&X and
two different molecular diffusion coefficien®= 0.1 andD = 0.0. The other parameters are
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FIG. 6. Mid-plane density of species one as a functiox ér t = 0, 500, 1000, fotJy=0.1, D =0.1. Flow
is moving to the right.

setas follows: grid 20& 25,byp = 3200Q b; = 320 ag= —320Q a; =320Q ogx =014 =5,
ooy = o1y = 5, Xg = X1 =50, Yo = Y1 = 12. This corresponds t®g = 153,104,318,
N; =2,020,795.

42.1.Up=01D=0.1

Indeed, the diffusive properties of the algorithm stay basically unchanged, as they sh
on account of Galilean invariance. This is shown in Figs. 6—7, which refer to the dens
profiles of both species ai= 0, 500, 1000 for the casdy = 0.1, D = 0.1. From these figures,
we observe that the profiles advect and diffuse at the correct rates, as quantitatively sho\
Figs. 8 and 9 reporting the mean positions alwagdy, as well as the variances squared, as
function of time. As expected, the mean positions and variances obey the theoretical rel
Xs(t) — Xs(0) = Ugt, Ys(t) — Ys(0) =0, s=0, 1, ando?(t) — 02(0) = 4Dt, s=0, 1.

42.2.Uy=01,D=0

As physical diffusion is lowered, dispersive effects start to appear upstream of |
Gaussian profile. These are evidenced in Figs. 10-11 which refer to the extreme
of zero physical diffusion® = 0) and flow speetly = 0.1. Dispersion materializes in the
form of density ripples on the rear side of the moving profile, the well-known Gibbs ph
nomenon. These ripples grow with increasing flow speed and smear out with increa:
physical diffusivity. The control parameter governing the intensity of these ripples is t
cell Peclet NumbePe, = U—Sx, which in lattice units Ax = 1) is simply the ratidJ /D.

Our numerical experiments indicate that the ripples amplitude does not take on sigl
cant values for cell-Peclet numbers below approximately 10. Higgeresult in sustained
growth of the ripple amplitudes up to the point where the minority species is driven
negative values. At this stage, an underflow control mechanism is required. Since the r
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FIG. 7. Mid-plane density of species one as a functioxa@tt =0, 500, 1000, fotdo=0.1, D =0.1. The
flow is moving rightwards.
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FIG. 8. Average position along andy of species zero as a function of time fdr=0.1, D =0.1.
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FIG. 9. Variance squared of species zero and one as a function of tinu fe10.1, D =0.1.
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FIG. 10. Mid-plane density of species zero as a functiox éér t =0, 500, 1000, forU,=0.1, D =0. The
flow is moving to the right.
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FIG. 11. Mid-plane density of species one as a functioxdér t =0, 500, 1000, fotJo=0.1, D=0. The
flow is moving to the right.

purpose of this work is to analyze the numerical properties of the “plain” integer La:
Wendroff scheme, to date, the underflow control consists in simply resetting negative va
to zero. Since this breaks particle conservation, future work shall be devoted to the deve
ment of more sophisticated dispersion-limiters, possibly in the direction of monotonicit
preserving schemes. For instance, preliminary tests show that by prefactoring the Wenc
term (8) with a disposable parametex® < 1, mass positivity can be ensured without
violating exact conservation. By so doing, further stability gains have been observec
numerical simulations df — ¢ turbulence models [10].

4.3. Taylor's Hydrodynamic Dispersion

As a third test case we consider the tracer diffusion and hydrodynamic dispersion |
Poiseuille velocity profile (Taylor hydrodynamic dispersion).

Here, besides molecular diffusion and convective motion, the species undergo hydrc
namic dispersion on account of the stretching effect exerted by the sheared flow cor
uration. The aim of this section is to test whether our integer scheme correctly captt
this hydrodynamic stretch mechanism. We have performed a series of simulations v
various values of the centerline spedgland two different molecular diffusion coefficients
D =0.01 andD =0.001. The other parameters are set as follows: grid 208, by =
3200Q b; =3200 ag = —16000a; = 16000 50x = o1x = 5,00y = 01y = 50, Xp = X1 =50,

Yo =Y1=12. The total number of particles ¢, = 148,831,768N; = 20,136,193.

4.3.1. Longitudinal Dispersion Coefficient

As a quantitative test, we measure the longitudinal dispersion coeffigjetefined as the
variance of the species density along the streaming dirextitn (t) = >, (X, — X)?p /2t
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FIG. 12. Relative dispersiod, as a function of the Peclet number, for=0.01 andD = 0.001. Due to the
definition of§_ = D, /D — 1, the theoretical lines are coincident.

where, as usuak is the mean position along Current literature (e.g., see [14]) yields

P&
DL=D<l+ﬁ)>, (23)

wherePe=UgH/D is the Peclet number computed with the maximum flow spded
and H =24 is the channel width. The quadratic factor in Eq. (23) reflects the effect
hydrodynamic stretch produced by the sheared flow configuration. This term is domin
for Pey > Pe, = v/470~ 23, whereas below this value molecular diffusion prevails.

The numerical comparison is best organised in terms of the relative dispérsion
(DL — D)/D, which, according to (23) should scale liRe§/470 independent of the molec-
ular diffusivity D. The results are summarized in Fig. 12, wh&reas obtained by sim-
ulations is compared with the analytical results (continuous lines) for the two values
molecular diffusionD = 0.01 andD = 0.001. Due to the normalization, the valuesipfas
a function ofPe should collapse into a single curve, which is exactly what Fig. 12 shows

4.3.2. Spatial Distribution of the Species Density

Next, we examine the spatial distribution of the density field. Since we don’t know
any analytical solution, we compare our method with a standard floating point calculat
based upon an explicit finite volume method.

The finite-volume code is based on the classical Patankar scheme [15]. In a nuts|
the method is based on an explicit update of the generic scalar unkbgvatated in the
center of cellQ2¢, via the advective (suffid) and diffusive (suffixD) fluxes crossing the
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four boundaries of the cefk,

De(t) = % > (CR+CR)Pa(t — AD), (24)

¢ h=04
whereV, = AxAYy is the cell volume. Her@,, denotes the scalar value in the center of the
cell 2, sharing thenth boundary withQ2.. The subscript O labels the standing componen
of the flux, the one that does not leave the €Rllin the time lapse\t. As an example, the
coefficients of advective and diffusive fluxes crossing the east boundary (subscript 1)
given byC =u; Ay andCP = DAy/Ax.

This method incorporates a (non-linearly) Peclet dependent flux limiter protecting agai
negative densities induced by high local Peclet numbers. The specific form adopted in
work is as follows:F A — FA=Max[0, FA]and D» — D* = D2 Max[0, (1 — (Pe/10)%)].
Interestingly enough, this flux limiter was independently designed to cut-dfeatl10,
which is pretty close to the limiting value emerging from our simulations (see previol
section). Positivity does not come for free, however, but only at the price of a non-z
numerical diffusivity. The effects of such a diffusivity are well visible in the numerica
simulations, as we shall detail in what follows. The simulations were run on & 300rid
with the same set of parameters given earlier in this subsection. The flow sphed &1
and the diffusivity isD = 0.001.

The initial condition for both species is shown in Figs. 13—14, reporting density contot
normalized to the background value of the majority spedigs,

Species 0, time=0, Digital

T T T T T T T T T

80

60

20 40 60 80 100 120 140 160 180 200
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

FIG. 13. Digital density of species zero ta&= 0 (initial condition). Here and throughout, digital indicates the
results obtained with the interger Lax—Wendroff scheme.



TRANSPORT PROCESSES IN FLUID FLOWS 509

Species 1, time=0, Digital
T T T 1 I 1 I I T

80

1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

1 T T
pr 5
4 -
: ; .

0.1 0.156 0.2 0.25 03 0.35 0.4 0.45 0.5 0.55

FIG. 14. Digital density of species one =0 (initial condition).

Under the (negligible) effects of molecular diffusion and hydrodynamic shear-driv
stretch, as time evolves, the initial circles are turned into a “boomerang shape.” This ef
is well visible in Figs. 15-16, which show the species densities after one recirculat
time (L/Ugy = 2000 time stepd, = 200 being the channel length). Note the change in th
color scale (the normalization staying the same throughout) which is introduced for met
graphical purposes. Small ripples due to numerical dispersion are again visible.

After 2000 steps (one transit time), molecular diffusi@=£ 0.001) should have little
effect as compared to hydrodynamic stretch. Indeed the effect of hydrodynamic stretc
very apparent and looks quite similar for both the integer and floating-point calculatic
Diffusion is however higher for the finite-volume computation, as witnessed by the fact tl
the inner core of the density pit (species zero) and bump (species one) is significantly
diffuse for the integer calculation than for its floating-point counterpart (see Figs. 17-1.

Finally, we performed a very long time integration of 20,000 time steps correspondi
to 10 longitudinal transit times. Here, we expect physical diffusion to produce a visit
spreading effect in the integer simulation sirid/o2 ~ 1. Such a diffusive effect is indeed
visible from Figs. 19—20 (note the change in scale with respect to the previous figures).
observe that, unlike the case of uniform convection, this simulation did not develop ¢
significant Gibbs phenomena, as witnessed by the fact that no action from the under
control algorithm was ever requested in the course of the long simulation.

Before concluding, we give one word on computational performance. The integer ¢
floating-point code take about 40 and A5/step/site respectively on a Sparcl compute
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Species 0, One transit time, Digital

T T T T T T T T T

80

0.65 0.7 0.75 0.8 0.85 09 0.95 1 1.05

15
Species 0, One transit time, Floating point
T T T T T T T T T
0.4
0.3

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

0.6 0.65 0.7 0.75 0.8 0.85 0.9

FIG. 15. Digital density of species zero ai= 2000 (one transit time), fdd =0.1, D =0.001

FIG. 17. Floating-point density of species zerotat 2000 (one transit time), with the same parameters as
Figs. 15-16.
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Species 1, One transit time, Digital
1 T T T T T T T T

60

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

FIG. 16. Digital density of species one = 2000 (one transit time), fdd =0.1, D =0.001

Species 1, One transit time, Floating point
1 1 T T T T T T T

0.4 1

0.3 o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 05

FIG. 18. Floating-point density of species onetat 2000 (one transit time), with the same parameters a:
Figs. 15-16.
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Species 0, Ten transit times, Digital

T T T T T T T T T

80

60

1 1 | 1 ] 1 1 1 1

20 40 60 80 100 120 140 160 180 200

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

FIG. 19. Digital density of species zero ti= 20000 (ten transit times) fdd = 0.1, D =0.001

Species 1, Ten transit times, Digital

1 1 1 1 1 1 1 1 I

80

-20
1 1 1 [l 1 [l 1 1 |
20 40 60 80 100 120 140 160 180 200
3 T 1 T
L 1 1 4
0.1 0.1 0.12 0.13 0.14 0.15 0.16 0.17 0.18

FIG. 20. Digital density of species one = 20000 (ten transit times) fdd = 0.1, D =0.001
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These figures are purely qualitative, for more than one reason. First, the language,
the integer and Fortran for the floating-point codes, is not the same; second, no spe
optimization efforts have been undertaken on either codes. Judging on mere oper:
count, it is reasonable to expect that the integer and floating-point versions of the s:
Lax—Wendroff algorithm would deliver essentially the same performance on a gene
purpose computer.

This set of results provides satisfactory evidence that the species advection-diffu:
process is handled properly by the present integer Lax—Wendroff scheme. As already r
tioned, while numerical diffusivity appears fairly well mastered, control of numerical di
persion calls for further refinements. This will be the subject of future research.

5. CONCLUSIONS

In this paper, we have presented an integer formulation of the Lax—Wendroff fini
difference scheme for the transport of multicomponent flows. The scheme satisfies e
integer particle conservation laws for each chemical component. This feature is hig
desirable in view of future applications involving chemical reactions with disparate tin
scales, and also to perform long time simulations. Though particle density distribut
functions for each chemical component are all represented by integers, their ensel
averaged property obeys the standard passive-scalar multi-component transport equat
the large scale limit.

In the context of lattice gas and lattice Boltzmann simulations, the integer algoritt
developed here, where oryescalar variable is needed per species, achieves a significe
memory savings over the traditional method of dealing with multiple species in latti
methods, which required the storageddifferent density components per each additiona
speciesd being the number of discrete directions on the underlying lattice.

Theoretical analysis shows that the algorithm yields negligible numerical diffusion
relevant orders. It is also shown that it is stable under the fairly mild conditions we hz
tested to date. Some benchmark cases have been analyzed with this algorithm, an
accuracy compares favorably with standard floating-point numerical algorithms. In fz
we find significantly reduced numerical diffusion for the integer scheme compared w
the floating-point code, although we make no claims as to the relation of this latter cod
current state-of-the-art. The algorithm is a simple and completely parallel numerical t
that can be used to perform practical and efficient large-scale computations.

Work left for the future includes an additional procedure explicitly enforcing positivit
of the particle distribution functions at all times. Such a procedure must be construc
via local dynamics in order to preserve the parallel feature of the algorithm, as well ac
prevent numerical diffusion effects. Most importantly, the present scheme needs be cou
with a dynamic fluid solver so as to assess its robustness in situations where non-negli
density gradients arise.

Investigations along these lines are under way.

APPENDIX: STABILITY ANALYSIS

For the sake of clarity and in order to focus attention on the essential physics, we ana
the basic stability properties of the extended Lax system indhsiryle component case at
the critical situation with zero molecular diffusivity (i.eD, =0). In addition, to make the
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conclusion unambiguous, we present the analysis by ignoring flow field variations, so 1
the system is essentially linear.
In 2d, Eqg. (9) has the form

1+20x

120y
IOS(X7 y’ t + At) = pS(X - AXv yv t) + 4 IOS(X + AX? yv t)

1+ 20, 1-20,
+ 4 pS(X» y - Ay, t) + 4 pS(X, y“r‘ Ay, t)
+DX[pS(X + A Y, 1) = 20s(X, Y, 1) + ps(X — Ay, Y, t)]

+Dy[10$(xv y + A)h t) - ZpS(X’ y, t) + IOS(Xv y - Ay’ t)]

1~ -~
- ZUny[ps(X — Ay, y+ Ay, t) — ps(X — Ay, Yy — Aya t)
— ps(X+ Ax, Y+ Ay, 1) + ps(X + Ax, Y — Ay, )], (25)
where now the diffusivities in the cartesian directions are

_ Y02
Dy = —7(1-203).

Fourier transforming the variables frof, t) to (k, ), we obtain

» 1+20,\ . 1—20,\ . 1+20,\ . 1-20,)\ .
o _ iky X e|kX y iky y e|ky
¢ ( 7 )e +< 1 ) +< 7 >e +( 7 )

+ Dy — 2+ e + Dy[eY —2+€79]
1

+ 500, — e e —e ). (26)
Separating the real and imaginary pasis: Q2 + iy, the above equation results in

1
e’ co9Q) = é(cos(kx) + cogky)) + 2Dy (cogky) — 1)

+ 2Dy (cosky) — 1) — 0,0, sindk,) sink,) @)
e’ sin(Q) = ljx sin(ky) + ljy sin(ky).

The equations can be expressed in a more compact form with new variables,

8§ = (8x, 8y) = (% + 2Dy, % + 2'Dy>, (28)
€ = (Cx, Cy) = (cogky), cogky)), (29)
S= (S, Sy) = (sin(ky), sin(ky)), (30)

andU = (Uy, Uy). Hence we can rewrite (27) as

g cog) =48-(c— 1) +1-U,Uyss, (31)
e sin(Q) =U-s, (32)
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wherel= (1, 1). In order to investigate the stability properties of the system, we take tl
square of (31) and (32) and add them together. We then arrive at the following equa
governing the imaginary part of the frequency,

e =[5 -(c—1)+1-UUys5]2+ (U-9)2 (33)
Or equivalently,

e —1=25-(c— 1 +[8-(c—D]*—20,Uys8[68 - (c — D)]
+U030%s2s] + Us? + UZs?. (34)

Stability is guaranteed if <0, or equivalentlye® — 1<0.
It is difficult to gain insight from this expression in general. Instead, we examine (34)
order of wave numbek. Because

k2 Kk? k2 kd
< 2 Tog T Tyt t ’

K3 k3
= (kx_Gx—i—”.’ky_Gy—}_”.)’

to O(k?) we have

e — 1= (UF - 8)ki + (UF —8y)KZ. (35)

RecallthaD, = —3(1-202), sowe have, = UZ (see Eq. (28)). Hence the right-hand side
of (35) vanishes, which indicates there is no second order diffusion effect in the exten
Lax scheme, a desired result.

Next we look at the order oD (k%). Stability is significantly enhanced if contributions
from this order provide a negative contribution to the right-hand side of (34).

Using the result of vanishin@®(k?) from (35), and after some straightforward algebra
we have

1- ~ 1 - ~ 3, 00m
e —1= —Zui(l—ui)k;‘——Zu§(1—u§)k§+§u3u§k§k§
+U,Uykyky (UZKE+U05K2). (36)

If we use the following readily deducible inequalities,

NI NI

we obtain

UZ(1-803)k. (37)
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Therefore, stability is indicated & (k*) if the fluid velocity component obeys the condition

~ 1
Ugl < Z—ﬁ ~ 0.35. (38)
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